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Synthesis of tunable fluorescing semiconductor chalcogenide
nanopatrticles, their study, and applications are at the forefront of
current researchin recent years effective synthetic routes for the
production of cadmium chalcogenide particles (CdS, CdTe, and
CdSe) have been developtd.The stronger fluorescing particles
involve TOPO/TOP (trioctylphosphineoxide/trioctyl phosphine)
methods’? which however, utilize highly toxic, flammable, air-
sensitive, and explosive precursors, and require relatively high
temperatures~<250—-350°C). Very recently it was shown that less
hazardous precursors could be used n a single-pol mamer (070U, TEL5 1S OPAES B0 1LOM 80
produce CdS partlcle%,f_‘ although the methf)d St'_” employs the histograms ofpparticle’s grown at 70 and “EID(bothpanneaied at 12C).
TOPO/TOP system at high temperature and in an inert environment.
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We describe here a generic method for producing high-quality 12 4
metal sulfide nanoparticles of a controllable and narrow size 210 3§ = 122
distribution in the nanometric range, with quantum-confinement  Sos 28 5 7]
wavelength-tunable optical absorption and (narrow band) excitonic %o,s 1 g £ %
emission (with and without significant deep-trap broad emission 50'4 0g §
peaks). Furthermore, it is a one-pot method using a single, &, ;LIE.I E 22'
convenient precursor (applicable to a variety of metal ions and I RPTrar r T e o

capping agents) and is carried out under mild conditions-(E8D Wavelength (nm) Wavelength (nm)
°C), usually exposed to the ambiémdditionally, this procedure Figure 2. () Absorption and emission (370 nm excitation) spectra of CdS
allows easy control of the relative intensities of the excitonic short- particles synthesized at different temperatures. The rightmost curves
wave versus surface-state long-wave emission. The general WisdorrFO"esF’O‘rr‘]G| tlofzti(%)wnh Increasing 10C '”Creme”tfs betere“Ithe curves,

- . . . oing to the left. (b) Tuning of excitonic versus surface photoluminescence
has_ been tha_t to obt_aln cr_ystallme particles with ;harp reson_ancescq)f Cds particles by annealing at 120. Annealing time (a) 0 min, (b) 45
their synthesis requires high temperatures and rigorously air-free min, and (c) 75 min.

conditions. However, we have produced such high-quality particles
at relatively low temperatures, even under normal atmospheric °C. Nearly monodisperse particles are observed with average

benchtop conditions. diameters of 5.2£0.6) and 3.5¢0.4) nm, respectively.
As precursor we use metal salts of alkylxanthates (usually long-  The number of nucleation centers which form initially (and the
chain alkyl xanthates), RCH,—CH,—O—CS,". Transition metal ensuing number of particles) is inversely proportional to the final

ions readily form air-stable insoluble xanthate salts. Previously we average particle volume. That number depends on the activation
used hexadecyl xanthates, HDX, to produce and cap metalenergy for the nucleation via an Arrhenius exponential term. On
nanoparticled® Recently Nair et af used ethyl xanthate for the  the basis of these considerations and the results of Figure 1 we
production of CdS particles in the TOP/TOPO method. estimate the activation energy for the nucleation of CdS particles
Here we discuss the production of CdS nanoparticles. Heating from cadmium xanthate in HDA to be 55kJ/mol.
the metal xanthate in an appropriate solvent readily yields the metal From electron diffraction in the TEM, the plane distances are
sulfide at a relatively low temperature, which depends on the found to be 0.335, 0.208, and 0.176 nm, which match the (110),
specific solvent used. In the presence of a strong electron-donating(220), and (311) planes of CdS.
solvent, (e.g., hexadecylamine (HDA)) the metal sulfide particles  The monodispersity of the particles is manifested in the spectrum
form at a temperature as low as 70. The reaction is carried out  (Figure 2a) by the presence of a clear absorption peak rather than
by heating the precursor in a simple test tube without any an absorbance shoulder or thresholédTheoretically calculating
air-sensitive techniqueControl of the size is obtained by adjusting  the size of the particlé3(using an effective mass ratio of 0.2) gives
the reaction temperature (#220°C, for HDA), or the concentra- 3.1 and 5.3 nm for the sizes of the two preparations of Figure 1,
tion of the metal xanthate. The synthesis follows classical colloid which are in agreement with the TEM results. The quantum
La Mer behavio! higher temperatures and higher precursor confinement shifts the narrow emission bané0—35 nm fwhm)
concentrations favor faster particle nucleation, resulting in more from ~440 nm to 480 nm. The quantum efficiency of these

numerous and smaller particles. unshelled particles at 412 nm excitation is Z®.2% (calculated
Figure 1 shows a transmission electron microscopy (TEM) from a comparison to perylene).
micrograph of CdS particles produced at’@from HDA and the Figure 2b shows the emission spectrum from CdS particles that

histograms of the size distribution for particles grown at 70 and 90 have been gradually annealed-~at20 °C. Initially the particles
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exhibit a strong broad emission around 600 nm (associated with We extended our method to the production of Zn, Cu, Mn, Hg,
deep-surface trapsj},while the excitonic~450 nm fluorescence  and Pb sulfides using their respective alkylxanthate salts, and the
is weak. As annealing proceeds, the long wavelength emission losegyeneral behavior is similar to that of cadmium. In addition, a large
intensity, while the shorter wavelength peak steadily grows. The variety of capping agents (e.g., thiols, amines, phosphines, etc.)
assignment of the~600 nm broad band to surface states is can be used for stabilizing these particles.

confirmed also by the fact that a simple wash of the particles with  In conclusion, we reported here a simple and versatile method
methanol, as well as adding HDA to suspended particles, decrease$or the controlled production of high-quality tunable metal sulfide
the integrated intensity of this emission (and increases that of the nanoparticles using a generic precursor in a single-pot, low-
sharp excitonic emission). Thus, we can control the spectroscopictemperature process. The method is general, applies to a large
behavior of the particles, not only by tuning the wavelength of the variety of (transition) metal sulfides and different capping agents,
excitonic emission but also by adjusting the excitonic/surface and enables convenient, one-pot production of-eshell structures.
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and longer times than in HDA. The particles§ nm, by TEM) in

dichloromethane show an absorption shoulder at 450 nm and a

narrow band emission at 480 nitx{. = 370 nm). However, using

TOP or TBP (tributyl phosphine) as solvents (excluding TOP
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